Автоматические дисковые фильтры

Одной из разновидностей механических фильтров, предназначенных для очистки воды от нерастворимых примесей – являются дисковые фильтры. Эти

устройства широко используются в быту, промышленности и сельском хозяйстве, сменив ранее применяемые для механической очистки воды сетчатые фильтры. В сравнении с ними дисковые фильтры характеризуются более высокой производительностью и грязеёмкостью фильтрующего элемента.

<u>Дисковые фильтры это инновационные и чрезвычайно эффективные устройства для удаления взвешенных примесей.</u>

Принцип действия

Дисковые водоочистные устройства, оснащаются специальным фильтрующим элементом. Он представляет собой блок, состоящий из набора рельефных полимерных дисковых колец, которые при сжимании образуют объемную сетчатую структуру, удерживающую в себе нерастворенные в воде частицы.

При этом, площадь рабочей поверхности блока (картриджа) соответствует суммарной площади всех дисковых колец в пакете. Это позволяет сделать очищающее устройство более компактным, увеличив при этом эффективность очистки.

Так площадь фильтрации:

- двухдюймового блока (2") составляет 1200 см²
- трехдюймового блока (3") 1600 cм²
- четырехдюймового блока (4")
 3200 см²



В режиме фильтрации **(Service)** вода проходит через плотно сжатые диски (снаружи – внутрь), а нерастворенные частицы остаются в междисковом пространстве.

Промывка фильтра

Промывка (очистка) фильтра осуществляется автоматически при помощи изменения направления потока воды на обратный (Back Wash).

Обратный поток подается под давлением, диски раздвигаются, увеличивается зазор в междисковом пространстве, в результате чего происходит сброс всех задержанных ранее частиц в канализацию.

Как правило, промывка каждого фильтровального блока занимает около 10 секунд. В течение этого промежутка времени в дренаж выбрасывается от 33 до 35 литров воды. В среднем на один блок расход воды на <u>собственные нужды</u> может составить до 0,2 % от его производительности.

Конструктивные особенности

В системе дискового фильтра для воды энергопотребляющие элементы представлены электромагнитными клапанами, (потребляемая мощность при этом составляет до 8 Вт), а также управляющим контроллером (мощность потребления до 100 Вт).

Работой фильтра управляет программируемый <u>логический контроллер</u>, инициирующий промывку фильтра по сигналам с различных датчиков.

Для примера:

- сигнал от дифференциального реле давления при перепаде давления на входе в фильтр и выходе из него сверх допустимого (обычно при разнице в 0,5-0,7 bar);
- по команде таймера с заданным интервалом времени, определяемым опытным путем для каждой системы и условий эксплуатации;
- по сигналу поступающего с внешнего датчика;
- более продвинутые контроллеры позволяют использовать любое из вышеперечисленных событий, доступных к программированию.

Корпусы дисковых фильтров изготовлены из усиленного стекловолокном полиамида (РА), а для изготовления дисковых фильтрующих элементов (колец) используется прочный и легкий полимер — полипропилен (РР). Данные материалы не подвержены коррозии, не вступают в реакцию с химически агрессивными веществами, а также отличаются устойчивостью к температурным перепадам. Химически устойчивые модели дисковых фильтров для воды могут использоваться для работы с морской водой.

Оптимальными рабочими условиями дисковых фильтров являются:

минимальное давление на входе в фильтр 2 бар;
максимальное давление 8 бар;
максимальная температура ≤ 60 °C;
диапазон рН 4-13

Дисковые фильтрующие элементы обладают <u>цветной маркировкой</u>, указывающей на допустимый уровень фильтрации (порог отсева). Используется палитра из пяти цветов. Для самой тонкой очистки (до 20 микрон) используют фильтрующий дисковый элемент серого оттенка. Затем по возрастанию:

50 микрон – зеленые;

100 микрон – черные;

130 микрон – красные;

200 микрон – желтые дисковые элементы.

■ 200μm ■ 130μm ■ 100μm ■ 50μm ■ 20μm (75 mesh) (120 mesh) (150 mesh) (300 mesh) (625 mesh) Конструктивно это достигается изменением размера выточенных в дисках канавок (кроме серого), влияющих на тонкость фильтрации. Самый тонкий фильтр насчитывает 32 канавки, а самый грубый — 18 на погонный сантиметр.

Область применения

Дисковые фильтры широко используется в таких областях, как металлургия, электронная и горная, нефтеперерабатывающая, газовая и химическая промышленность, сельскохозяйственная отрасль, на станциях опреснения, при водоподготовке и очистке питьевой и технической воды и т. д.

Рекомендации по выбору дискового фильтра

В зависимости от степени загрязненности воды её можно классифицировать на:

Вода 1 класса (Условно чистая) - вода, применяемая для городского водоснабжения.

Вода 2 класса (**Слабо загрязненная**) — вода, забираемая из открытых источников водоснабжения хорошего качества; циркуляционные контуры охлаждения; скважинная вода из артезианских источников; вода, прошедшая стадию отстаивания с коагуляцией и т.п.

Вода 3 класса (**Загрязненная**) - скважинная вода из водоносных пластов среднего качества; сточная вода, прошедшая биологическую очистку; вода из открытых источников водоснабжения с множеством бактерий и т.п.

Вода 4 класса (**Грязная**) – вода с высоким содержанием железа и марганца; вода из наземных источников низкого качества; загрязненная вода в результате наводнений, паводков; сточная вода, не прошедшая стадию биологической очистки.

Качество воды	Условно чистая			Слабо загрязненная			Загрязненная			Грязная		
Степень	200	100	50	200	100	50	200	100	50	200	100	50
фильтрации	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm
Модель	Максимальный			Максимальный			Максимальный			Максимальный		
	расход м³/ч			расход м³/ч			расход м³/ч			расход м³/ч		
MD 2-2	≤38	≤30	≤22	29≤	≤22	≤18	≤21	≤15	≤13	≤13	≤10	≤8
MD 2-3	57	45	33	43	33	26	31	22	18	18	14	10
MD 2-4	76	60	44	57	44	35	41	30	24	25	19	14
MD 2-5	95	75	55	72	55	44	51	37	30	31	23	17
MD 2-6	114	90	66	86	66	53	62	45	36	37	28	21
MD 3-3	111	90	60	84	66	48	60	45	33	36	28	19
MD 3-4	148	120	80	112	88	64	80	60	44	48	37	26
MD 3-5	185	150	100	140	110	80	100	75	55	60	47	32
MD 3-6	222	180	120	168	132	96	120	90	66	75	56	39
MD 3-7	259	210	140	194	154	112	140	105	77	84	66	45
MD 3-8	296	240	160	224	176	128	160	120	88	96	75	52
MD 3-9	333	270	180	252	198	144	180	135	99	108	85	58
MD 3-10	370	300	200	280	210	160	200	150	110	120	94	65
MD 4-3	224	176	128	168	129	102	120	88	70	72	55	40
MD 4-4	280	210	160	210	154	128	150	105	88	90	60	51
MD 4-5	374	294	214	281	216	171	200	147	118	120	91	68
MD 4-6	448	352	256	336	258	205	240	176	141	144	109	81
MD 4-7	522	410	298	392	301	238	280	205	164	168	127	94
MD 4-8	597	469	341	448	344	273	320	234	188	192	146	108

На практике, наиболее востребованными являются фильтрующие элементы с порогом фильтрации 100 и 130 микрон. Помощь в выборе порога фильтрации дисковых фильтров для воды различного качества покажет следующая таблица:

Область применения	Диапазон фильтрации
Очистка качественной и воды от воздействия вторичного	20 μ
загрязнения	
Финишная очистка подготовленной воды	
Предварительная очистка питьевой и технической воды	50 μ
Защита форсунок	
Предварительная очистка перед фильтрами в системах	100/130 μ
водоподготовки	
Очистка подготовленной воды при возможном вторичном	
загрязнении	
Фильтрация воды в замкнутом контуре	
Очистка вторичных и сточных вод	200 μ

Важно!!!!

*** Окончательное решение по выбору порога фильтрации фильтрующего элемента, а также модели фильтра с определенной производительностью можно сделать в соответствии с фактическими условиями эксплуатации или на основании предварительно проведенных пилотных испытаний.

ПРЕИМУЩЕСТВА ДИСКОВЫХ ФИЛЬТРОВ

- Простота конструкции
- Широкий диапазон применения
- Большой диапазон производительности при компактных размерах (от 6 до 300 м³/ч)
- Тонкость очистки от 20 до 200 микрон
- Возможность использования в комплексных системах очистки воды
- Быстрая ручная или автоматическая промывка
- Устойчивые к химическим реагентам материалы
- Не требуют расходных материалов
- Техническое обслуживание не требует больших материальных затрат
- Высокие прочностные характеристики при малом весе
- Длительный срок службы

